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ABSTRACT
Vibrationmeasurement is a crucial task in industrial systems, where
vibration characteristics reflect the health and indicate anomalies of
the objects. Previous approaches either work in an intrusive manner
or fail to capture the micrometer-level vibrations. In this work, we
propose mmVib, a practical approach to measure micrometer-level
vibrations with mmWave radar. By introducing a Multi-Signal Con-
solidation (MSC) model to describe the properties of the reflected
signals, we exploit the inherent consistency among those signals
to accurately recover the vibration characteristics. We implement
a prototype of mmVib, and the experiments show that this design
achieves 8.2% relative amplitude error and 0.5% relative frequency
error in median. Typically, the median amplitude error is 3.4𝑢𝑚
for the 100𝑢𝑚-amplitude vibration. Compared to two existing ap-
proaches, mmVib reduces the 80𝑡ℎ-percentile amplitude error by
62.9% and 68.9% respectively.
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Figure 1: Vibration measurement with mmVib

1 INTRODUCTION
Vibration is the most common phenomenon in industry. Vibra-
tion of the industrial objects generally reflects their internal states.
Damage or malfunction of the objects usually leads to abnormal
changes in the vibration characteristics [8]. Vibration measurement,
namely to measure the vibration amplitude and frequency, is a cru-
cial task in various industrial scenarios for checking machinery
health, identifying anomalies, and diagnosing faults [1, 8, 13].

Conventional approaches for vibration measurement rely on
specialized sensors like piezoelectric sensors [9, 20] or optical de-
vices like laser vibrometers [6, 27]. Specialized sensors require to be
directly installed on the vibrating object, which means high com-
plexity in deployment and maintenance. Optical devices often have
high precision and accuracy, but their prohibitive cost prevents
them from being widely used in real application scenarios. The
table in Fig. 1 shows a brief comparison of vibration measurement
approaches [6, 9].

With the rapid progress in wireless sensing, recent works pro-
pose to exploit wireless signals, e.g. acoustic signal [21, 31] and
radio frequency (RF) signal [18, 32, 36], for vibration measurement.
The vibrating object is a physical reflector of the wireless signal, so
that the vibration affects the propagation of the reflected signal. By
measuring and analyzing the reflected signal, one can obtain the
vibration characteristics. Compared to conventional approaches,
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the measurement based on wireless sensing is low-cost and easy to
deploy in practice. However, its precision is often limited, due to the
relatively long wavelengths of the employed wireless technologies,
while the vibration amplitudes of a large number of machines in
the industry do not exceed 100𝑢𝑚 [1, 8].

mmWave is a promising technology for measuring tiny displace-
ments, owing to its short wavelength. Recent works propose to use
mmWave in different sensing applications [7, 11, 16, 19, 23, 29, 33,
35, 37, 42]. But those approaches cannot provide highly precise and
accurate vibration measurement in the industrial scenarios. Fig. 1
shows a typical industrial environment, from which we can per-
ceive the following challenges. First, the industrial environments
are multipath-rich environments. Although mmWave has better
directionality than the conventional wireless signals, the received
signal at the antenna is still a mix of the signals reflected from both
the vibrating object and other reflectors in the environment. Second,
the vibration of the industrial objects is often at the micrometer
level [1, 8]. The signal changes caused by such vibration are easily
affected by the noise in the signal. Due to the above reasons, the
vibration-induced changes in the reflected signal are obscured and
distorted, making it extremely difficult to extract accurate vibration
characteristics.

In this work, we address the above challenges and propose
mmVib, a practical approach to measure the micrometer-level vibra-
tion with mmWave radar. We propose a multi-signal consolidation
model (MSC) that describes the properties of the reflected signals in
the In-phase and Quadrature (IQ) domain and exploit the inherent
consistency among those signals to accurately recover the vibration
characteristics. Our contributions are summarized as follows:

• We propose MSC, a signal model that comprehensively describes
the composition of the reflected mmWave signals. MSC captures
the multi-frequency and multi-antenna properties of the reflected
signal from the vibrating object in the multipath-rich environ-
ments.

• Based on MSC, the design of mmVib addresses critical challenges
in achieving the micrometer-level accuracy: (i) pinpointing the
vibrating object in the mixed reflected signal; (ii) recovering the
micrometer-level vibration under the influence of noise and other
reflected signals.

• We implement mmVib on the commercial off-the-shelf (COTS)
mmWave radar and evaluate its performance in both lab and
real-world environments. The results show that mmVib achieves
8.2% relative amplitude error and 0.5% relative frequency error
in median. Typically, the median amplitude error is 3.4𝑢𝑚 for
the 100𝑢𝑚-amplitude vibration. Compared to two existing ap-
proaches, mmVib reduces the 80𝑡ℎ-percentile amplitude error by
62.9% and 68.9% respectively.

The rest of the paper is organized as follows: §2 introduces the
preliminaries of vibration measurement with mmWave radar. We
present the MSC model in §3 and the design of mmVib in §4. §5
discusses the limitations of mmVib. §6 presents implementation
details and evaluation results. §7 discusses the related works. We
conclude mmVib and discuss future works in §8.
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Figure 2: Direct estimation based on phase change

2 PRELIMINARIES
In this section, we first introduce the principles of usingmmWave to
measure the displacement and then analyze why it can’t be directly
used for the micrometer-level vibration measurement in industry.

2.1 Estimate Displacement with mmWave
The core idea to track the displacement of the target with wireless
technologies is to extract the phase changes of the received signal
reflected from the target:

𝛥𝑑 = 𝜆
𝛥𝜙

2𝜋 (1)

where 𝜆 is the wavelength. The phase change 𝛥𝜙 acts as a stable
and accurate indicator of the propagation distance change 𝛥𝑑 , com-
pared to other signal features like RSS. Therefore, the millimeter-
level wavelength of mmWave endows it with over 25× and 65×
higher sensitivity to tiny displacements, compared to WiFi and
RFID respectively. That’s why mmWave is deemed to be a promis-
ing technology for measuring mechanical vibrations in industrial
scenarios, where the vibration amplitude typically does not exceed
100𝑢𝑚. However, our experiments provide a different observation.
We configure a vibration calibrator (the vibrating object we use and
introduce in §6.1) to vibrate with different amplitudes (30 ∼ 200𝑢𝑚)
and 100𝐻𝑧 frequency. Fig. 2(a) shows the errors of the vibration
characteristics that are directly estimated based on phase change.
The results show that the frequency estimation is consistently accu-
rate while the relative errors of the amplitude estimation are over
80%. The accuracy of the frequency estimation indicates that we
have indeed extracted the vibration signal. But the amplitude errors
are too large to correctly characterize the vibration. In order to find
out the reason behind, we take a deep look at the signal processing
of mmWave radar in the next subsection.

2.2 Phase Extracted from mmWave Radar
mmWave radar usually adopts frequency-modulated continuous
wave (FMCW) chirp signals for distance measurement, as shown in
Fig. 3(a). The frequency difference between the transmitted signal
(Tx) and the received signal (Rx) indicates the signal propagation
time, which can be used to determine the object distance. Denoting
the time-variant distance between the antenna and the vibrating
object by 𝑅(𝑡), the transmitted and received signal can be expressed
by:

𝑆𝑇𝑥 (𝑡) = exp[ 𝑗 (2𝜋 𝑓𝑐𝑡 + 𝜋𝐾𝑡2)]
𝑆𝑅𝑥 (𝑡) = 𝛼𝑆𝑇𝑥 [𝑡 − 2𝑅(𝑡)/𝑐]

(2)
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Figure 3: FMCW and range-Doppler processing

where 𝛼 is the path loss. 𝑓𝑐 and 𝐾 are the starting frequency and
the chirp slope of FMCW signal respectively. Then a mixer is used
to eliminate the carrier wave in the received signal and obtain the
so-called beat frequency signal 𝑠 (𝑡) as:

𝑠 (𝑡) = 𝑆𝑇𝑥 (𝑡)𝑆∗𝑅𝑥 (𝑡) ≈ 𝛼 exp[ 𝑗4𝜋 (𝑓𝑐 + 𝐾𝑡)𝑅(𝑡)/𝑐] (3)

whose phase values contain the distance information 𝑅(𝑡).
In practice, there exist reflected signals from different distances,

which cause different frequency components in 𝑠 (𝑡). In order to
extract the desired signal from 𝑅(𝑡), a Range-FFT operation [7, 19]
is conducted on the samples of 𝑠 (𝑡) within a chirp (denoted as the
fast-time samples) for the signal separation. As shown in Fig. 3(a),
this operation maps the frequency spectrum of 𝑠 (𝑡) to the range
spectrum indicating the distances of different reflectors. Since the
elapsed time of a chirp is around 0.1𝑚𝑠 , the displacement during
this period can be neglected and we only focus on the displacements
across consecutive chirps. Therefore, in the Range-FFT results of
each chirp, we pick up one sample in each range bin. Then, in a
certain range bin, combining those samples (denoted as slow-time
samples) forms a sample sequence of 10𝐾𝐻𝑧 sampling rate. If we
rewrite the object range 𝑅(𝑡) as 𝑅(𝑡) = 𝑅0 + 𝑥 (𝑡), where 𝑥 (𝑡) is the
vibration displacement within the range-bin resolution and 𝑅0 is
the object-radar distance, the reflected signal 𝑆 (𝑡) from the object
range bin can be represented as:

𝑠 (𝑡)
Range-FFT

−−−−−−−−−−−−−−−→
at object range bin

𝑆 (𝑡) = 𝛼 exp[ 𝑗4𝜋 𝑓𝑐 (𝑅0 + 𝑥 (𝑡))/𝑐] (4)

Then, we can estimate the velocity of 𝑥 (𝑡) by performing an-
other FFT operation called Doppler-FFT on 𝑆 (𝑡). Fig. 3(b) shows
the Range-Doppler spectrum that can detect the existence of the
reciprocating motion of a vibrating object. So why can’t the phase
change correctly recover the vibration displacement? Actually, 𝑆 (𝑡)
is composed of all the reflected signals from the range bin of the vi-
brating object. Thus, 𝑥 (𝑡) can’t be directly derived with the phase
values of 𝑆 (𝑡). Fig. 2(b) shows that the estimation error increases
when we deliberately place multiple metal reflectors in the same
range bin, which further verifies the above statement.

Another often neglected fact is that the measurement accuracy
is also seriously affected by the signal noise, especially for tiny
vibrations. For instance, a 100𝑢𝑚 vibration only results in about
0.12𝑟𝑎𝑑 phase change, which is very sensitive to the signal noise.

Therefore, to achieve accurate vibration measurement, two criti-
cal factors should be properly and carefully considered: (i) other
reflected signals entangled with the vibration reflection; (ii) the
noise in the phase values.

3 MODELING THE VIBRATION
In this section, we introduce the MSC model, which acts as the
theoretical foundation of mmVib.

3.1 Identifying the Signal in the IQ domain
According to Eq. 4, the reciprocating motion can change the signal
phase within a certain range, which means the signal samples plot-
ted in the IQ domain can form an arc-shaped trajectory centered at
the origin of coordinates. To verify this, we measure the vibrations
of 100𝑢𝑚 and 200𝑢𝑚 amplitudes with 1𝑚 and 2𝑚 distances away
from the radar. The corresponding IQ signal samples are shown in
Fig. 5(a).

There indeed exist arc-shaped trajectories: the central angles of
the arcs are proportional to their amplitudes, but their centers are
obviously not at the origin. The relationship between the central
angle and the vibration amplitude is reasonable because the vibra-
tion displacement linearly changes the signal phase. For example,
the central angle of the 100𝑢𝑚 vibration is about the half of the
central angle of the 200𝑢𝑚 vibration. As for the center coordinates,
their offsets from the origin are due to the impact of other reflected
signals from the same range bin of the vibrating object. Actually,
the theoretical derivation of Eq. 4 only considers the vibration re-
flection from the object. So in MSC, we modify it to also consider
the background reflections:

𝑆 ′(𝑡) = 𝛼𝑒𝑥𝑝 [ 𝑗4𝜋 𝑓𝑐 (𝑅0 + 𝑥 (𝑡))/𝑐] +
∑
𝑖

𝛼
[𝑖 ]
𝐵
𝑒𝑥𝑝 [ 𝑗4𝜋 𝑓𝑐𝑅 [𝑖 ]

𝐵
/𝑐]

= 𝛼𝑒𝑥𝑝 [ 𝑗4𝜋 𝑓𝑐 (𝑅0 + 𝑥 (𝑡))/𝑐] + 𝛼𝐵𝑒𝑥𝑝 [ 𝑗4𝜋 𝑓𝑐𝑅𝐵/𝑐]
(5)

where MSC regards all the background reflections as one composite
reflection 𝑆𝐵 from one single virtual reflector. 𝑅𝐵 and 𝛼𝐵 represent
the distance from the virtual reflector to the radar and the signal
strength of 𝑆𝐵 , respectively.

As shown in Fig. 4(a), we use the vector form of the signals in
the IQ domain to provide an intuitive representation of the signal
superimposition:

−→
𝑆 ′ =

−→
𝑆 + −→

𝑆𝐵 .
−→
𝑆 ′ rotates synchronously with −→

𝑆 ,
which explains the good accuracy of the frequency estimation in
Fig. 2. However, since 𝜃 ′ differs from the real phase variation 𝜃 , such
direction extraction suffers from errors in the amplitude estimation.

An intuitive way to extract the correct vibration reflection −→
𝑆

from
−→
𝑆 ′ is to fit a circle based on the signal samples. Then the static

component −→𝑆𝐵 can be eliminated by translating the circle center to
the origin of coordinates, and the phase change is proportional to
the vibration displacement [23]. However, it’s very challenging for
this simple circle fitting to deal with tiny vibrations, as shown in
Fig. 6. The low signal-to-noise ratio (SNR) could lead to unstable
fitting results and inaccurate vibration measurements.
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3.2 Properties of MSC
To cope with low-SNR signals, our insight is that increasing the
number of observations of the same vibration helps to control mea-
surement errors. We exploit the multi-frequency and multi-antenna
properties to provide multiple observations.

3.2.1 Multi-frequency Property of MSC. Eq. 4 indicates the signal
phase changes when either 𝑓𝑐 or 𝑥 (𝑡) changes. The vibration signal
𝑥 (𝑡) is out of our control, but the starting frequency of a chirp 𝑓𝑐
can be set in the mmWave radar. When we change 𝑓𝑐 and keep
𝑥 (𝑡) the same, the phase of the reflected signal changes. In IQ
domain, this results in the rotation of the reflected signal around
the origin of coordinates, as shown in Fig. 4(b). Therefore, if we
can enable a chirp group with different starting frequencies to
simultaneously measure the same vibration, ideally the reflected
signal corresponding to each chirp will rotate around the origin
of coordinates and form a large arc. The rotation angle between
reflected signals of two chirps can be represented by:

𝛥𝜙 = 4𝜋𝛥𝑓𝑐 (𝑅0 + 𝑥 (𝑡))/𝑐 (6)

𝛥𝑓𝑐 is the starting frequency gap between the chirps. Therefore,
we can fit a better circle using the combined signals.

However, due to the existence of the background reflection, 𝛥𝑓𝑐
leads to the rotation of the both signal components, as shown in
Fig. 4(c). In order to show that, we set a group of 8 chirps with
6𝑀𝐻𝑧 starting frequency gap and the same bandwidth. The first
chirp has 77𝐺𝐻𝑧 starting frequency and we measure the vibration
with 50𝐻𝑧 frequency and 100𝑢𝑚 amplitude. The vibrating object
is placed 1𝑚 from the radar and the IQ signals are shown in Fig.
5(b). The vibration reflections (colored lines) rotate around their

circle centers (grey dotted circles) and the background reflections
(grey lines) also rotate around the origin of coordinates. Since the
distance 𝑅𝐵 ≠ 𝑅0 + 𝑥 (𝑡), the rotation angle of the background
reflections 𝛥𝜙𝐵 = 4𝜋𝛥𝑓𝑐 (𝑅𝐵)/𝑐 is different from 𝛥𝜙 .

Suppose we find the correct circle center of each vibration re-
flection, we can eliminate the background reflection by moving
the circle centers to the origin of the coordinates. As shown in
Fig. 5(c), we observe that the combined vibration reflection is robust
against the noise by forming a large arc-shaped trajectory. However,
to utilize this property, we still face two critical challenges: (i) how
to create such a chirp group with a COTS FMCW radar; (ii) how to
find the correct circle centers with the knowledge of this property.
We address these challenges in §4.

3.2.2 Multi-antenna Property of MSC. Generally, a mmWave radar
has multiple antennas. The signals received from multiple Rx an-
tennas can be utilized to pinpoint the vibrating object and refine
the measurement.

Due to the half-wavelength spacing of Rx antennas, the propaga-
tion distances of the reflected signals from the vibrating object to
different antennas are different from each other, as described in Fig.
4(d). Eq. 5 tells us that this will cause the rotations of the vibration
reflections as well as background reflections. Fig. 5(d) shows the IQ
samples from 4 Rx antennas when measuring a 100𝑢𝑚 vibration at
1𝑚 distance and 10◦ angle of arrival (AoA) relative to the first Rx
antenna. We can see that the vibration reflections (colored lines)
and the background reflections (grey lines) are different.

Note that the measured signal is along the AoA of the vibration
reflection, which may differ from the vibrating direction. The mea-
sured signal is actually a projection of the real vibration to the AoA
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of reflection. Therefore, this multi-antenna property not only pro-
vides multiple observations but also offers an opportunity to refine
the measurement. To estimate AoAs of the vibration reflections
from different Rx antennas, we only consider their phase changes,
i.e. the geometric rotations of the colored lines in Fig. 5(d). The
background reflections also rotate when the propagation distance
𝑅𝐵 changes, but we are not interested in their AoAs. How to iden-
tify the correct AoAs of the vibration reflections is also a critical
challenge to be addressed by mmVib.

3.3 MSC Summary
we conclude the following properties of MSC that can improve the
vibration measurement:
• The chirp group provides us the opportunity for better signal
fitting by creating multiple observations on the same vibration
that can consolidate the vibration extraction.

• The starting frequency gap in the chirp group determines the
rotation angle 𝛥𝜙 between two vibration reflections from two
successive chirps. 𝛥𝜙 should be consistent in the whole chirp
group, which can be utilized to further improve the signal fitting.

• The spacing of the Rx antenna array differentiates the received
signals due to the different propagation distances. The rotation
of the vibration reflections of different antennas can infer their
different AoAs.
In the next section, we elaborate in detail how we exploit these

properties in our design of the robust and accurate measurement
system.

4 MMVIB DESIGN
This section introduces the design of mmVib. Fig. 7 shows the
workflow of mmVib, which consists of three main modules.
• VibrationDetection (VD):VD takes the raw samples ofmmWave
signals as inputs. By analyzing the Range-Doppler spectrum of
the signals, it detects the candidate range bins of vibrating ob-
jects.

• Robust Vibration Extraction (RVE): RVE takes the extracted
signals reflected from each candidate range bin as inputs. Then
it exploits MSC to combine the vibration signals from multiple
chirps for accurate signal extraction.

• Vibration Refinement (VR): VR takes into account the multi-
antenna signals to calculate the AoAs and refine the vibration
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measurement. It aggregates all the measurements to determine
the vibration characteristics.

4.1 Vibration Detection
The Range-FFT can separate signals based on their propagation
distance. Only specific range bin contains the target vibration signal
and we refer it as the vibration bin. Therefore, VDmodule examines
the Range-Doppler spectrum to search for candidate vibration bins.

In the spectrum, a higher magnitude at a certain range bin and a
certain Doppler bin indicates the higher probability of the existence
of a vibrating object. A candidate vibration bin should contain both
positive and negative velocities due to its reciprocating motion.
However, as observed in Fig. 8 where only one object is vibrating,
the number of candidate bins is much larger than the number of
vibrating objects.

To understand this observation, we re-examine our experiment
setup (Fig. 12) and find that, besides the vibrator, the body of the
calibrator as well as the table are also vibrating. The above ob-
servation is the result of the vibration transmission effect [12]: the
vibration signal in a certain bin can be transmitted to adjacent bins
symmetrically. According to the vibration transmission model [12],
the vibration velocity decays by 𝜖1.5 during its transmission, where
𝜖 is the distance between the vibration bin and its adjacent bins.

We model the impact of the vibration transmission on the Range-
Doppler spectrum as a convolution operation: the vibration at a
certain bin transmits to its adjacent bins through a 1D convolu-
tion template. Therefore, the detection process can be modeled as
a deconvolution operation, which is the inverse operation of the
convolution [17].

We illustrate the vibration transmission and detection in Fig.
8. The convolution template can be obtained with the vibration
transmission model: we set the coefficient of the middle bin to 1,
and calculate the coefficients of the adjacent bins by multiplying
an attenuation factor 1/𝜖1.5. After the deconvolution, VD selects
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Figure 9: Chirp group generation

the top-E range bins with the largest magnitude as the candidate
vibration bins. According the evaluation results in §6.4.1, we may
empirically set E to the number of vibrating objects plus one to
achieve a relatively high accuracy in practice.

4.2 Robust Vibration Extraction
The RVE module extracts the vibration signal from each detected
vibration bin. To guarantee the accurate extraction under low SNR,
it first generates a chirp group with different starting frequencies to
provide multiple observations, and then eliminates the background
reflections with a consolidated vibration extraction algorithm based
on MSC.

4.2.1 Chirp Group Generation. A typical FMCW radar transmits
only one chirp signal at a time. Then, how to generate a chirp group
that can simultaneously measure the same vibration as we expected?

Our key insight is to rearrange the fast-time samples of the beat
frequency signal 𝑠 (𝑡), defined in Eq. 3. Recall that the traditional
Range-FFT operation takes all fast-time samples as inputs and gen-
erates one slow-time sample. If we separate fast-time samples into
different groups and perform Range-FFT in each group, we can
obtain multiple simultaneous slow-time samples for each range bin.
Fig. 9 illustrates this process: we use a sliding window of size 4 on
6 fast-time samples, and obtain two fast-time sample groups with a
sliding step of 2 samples. This is equivalent to generate two shorter
chirps (Chirp #1, Chirp #2) with different starting frequencies from
the original long chirp. The chirp group has two appealing charac-
teristics: (i) Since slow-time samples are much longer than fast-time
samples, the chirps in a group can be regarded simultaneous to
each other. (ii) Different chirps starts at different frequencies, which
result in diverse but consistent observations of the same vibration.

There are two key parameters to generate the chirp group. In-
creasing the number of chirps leads to more observations, at the cost
of increased computation complexity. Increasing the shift frequency
enlarges the difference among chirps, but sacrifices the bandwidth
of one chirp as well as its range resolution. In practice, we may first
set the number of chirps, according to the constraints in compu-
tation complexity and the required measurement latency. In our
implementation, the number of chirps is 8. Then, shift frequency
is set by considering the complexity of the measurement environ-
ment. For example, in our laboratory experiments where there is
only one vibrating object, the shift frequency is set at 200𝑀𝐻𝑧. In
the field experiments where multiple vibrating objects co-exist, we
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Figure 10: Consolidated circle fitting

set a relatively small shift frequency of 13𝑀𝐻𝑧 to preserve a high
range resolution to differentiate reflections from different vibrating
objects.

4.2.2 Consolidated Vibration Extraction. To extract the vibration
signal, the primary task is to estimate the background reflections.
With the multiple IQ signals provided by the generated chirp group,
we can improve the vibration extraction process under low SNR.

The multi-frequency property of MSC tells us that, due to their
inherent consistency, those signals form a large arc around the ori-
gin of coordinates when the background reflections are eliminated.
Hence, the consolidated vibration extraction algorithm runs in the
following steps: (i) It first estimates the background reflection of
each chirp signal through basic circle fitting step; (ii) Then con-
solidated circle fitting step generates a fitting constraint for each
chirp signal that in turn improves the first step; (iii) The first two
steps iteratively run until a perfect large arc is obtained. Finally we
extract and aggregate the vibration signals through the vibration
signal extraction step. Below are the details of the algorithm.

Step 1 - Basic Circle Fitting: Let 𝑿 = {𝒙𝑙,𝑛}𝐿×𝑁 , 𝒙𝑙,𝑛 ∈ R2

denote the IQ samples from 𝐿 chirps with 𝑁 samples per chirp. For
the 𝑙-th chirp, the fitting is turned into an optimization problem
to obtain a circle with radius 𝑟𝑙 and center 𝒛𝑙 that minimizes the
summed geometric distance from every sample to the circle:

𝒛∗
𝑙
, 𝑟∗
𝑙
= argmin

𝒛𝑙 ,𝑟𝑙

𝑁∑
𝑛=1

(
∥𝒙𝑙,𝑛 − 𝒛𝑙 ∥ − 𝑟𝑙

)2
, 𝑙 ∈ [1, 𝐿] (7)

It is a nonlinear least squares optimization problem and can be
solved with the Levenberg-Marquardt (LM) algorithm [10]. When
the SNR is low, however, the basic circle fitting is error-prone with-
out a proper constraint on the radius.

Step 2 - Consolidated Circle Fitting: The first step gives a
basic but not always accurate estimation of the background reflec-
tion of each chirp signal. Therefore, combining multiple translated
chirps signals after the background elimination probably won’t
form a perfect large arc as expected. Suppose the large arc falls
on an intrinsic circle, Fig. 10 shows the two cases that each chirp
signal might not necessarily fall on it: (i) translation-needed case:
an improperly fitted radius will make the IQ samples of a chirp
fall inside (blue samples) or outside the circle; (ii) scaling-needed
case: a stronger or weaker signal strength of a chirp will make its
IQ samples fall on other concentric circles of the intrinsic circle
(yellow samples). Therefore, by properly translating and scaling
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the IQ samples of each chirp, we can finally get a perfect large arc.
The following is consolidated circle fitting process:

• First, we eliminate the background reflection of each chirp signal.
For the IQ samples of the 𝑙-th chirp {𝒙𝑙,𝑛}𝑁𝑛=1, the elimination is
done by subtracting the center coordinate 𝒛𝑙 of the chirp signal:
{𝒙 ′

𝑙,𝑛
}𝑁
𝑛=1 = {𝒙𝑙,𝑛 − 𝒛∗

𝑙
}𝑁
𝑛=1.

• Second, for each chirp signal, we derive its translation direction
Δ𝒙 as the unit vector of the vector from the origin of coordinates
to the average sample point 1

𝑁

∑𝑁
𝑛=1 𝒙

′
𝑙,𝑛

.
• Third, we simultaneously solve the radius of the intrinsic circle
𝜏 as well as the translation factors 𝝈 = {𝜎𝑙 }𝐿𝑙=1 and the scaling
factors𝜸 = {𝛾}𝐿

𝑙=1 by minimizing the average geometric distance
of every sample to the intrinsic circle:

𝜏∗,𝝈∗,𝜸∗ = argmin
𝜏,𝝈 ,𝜸

1
𝐿𝑁

𝐿∑
𝑙=1

𝑁∑
𝑛=1

(
∥𝛾𝑙𝒙 ′𝑙,𝑛 + 𝜎𝑙𝛥𝒙𝑙 ∥ − 𝜏

)2
(8)

We also add a penalty term Γ · (∑𝐿
𝑙=1 𝛾𝑙 − 𝐿)

2 to the above loss
function for regularization, where Γ is the penalty factor. With
estimated 𝜏∗,𝜎∗

𝑙
and𝛾∗

𝑙
for 𝑙-th chirp, its radius can be constrained

around its expected radius 𝜏∗/𝛾∗
𝑙
+ 𝜎∗

𝑙
𝛥𝒙𝑙 in the next iteration.

The iteration stops after the relative change in 𝜏 is less than a
small threshold (e.g. 1%). Denote the time cost of the fitting process
for each chirp signal by 𝐼1 and that of the fitting process for the
intrinsic circle by 𝐼2, the time cost of 𝑇 iteration is (𝐿𝐼1 + 𝐼2) · 𝑇 .
According to our experience, 𝑇 is usually less than 3. So, the total
processing time is mainly determined by the number of chirps 𝐿.

Step 3 - Vibration Signal Extraction For 𝑙-th chirp, with the
final translated sequence {𝒙𝑙,𝑛 − 𝒛∗

𝑙
}𝑁
𝑛=1 whose phase sequence

is {𝜙𝑙,𝑛}𝑁𝑛=1, we obtain one observation of the vibration signal
{𝑋𝑙,𝑛}𝑁𝑛=1:

𝑋𝑙,𝑛 =
𝑐

4𝜋 𝑓𝑐𝑙
unwrap(𝜙𝑙,𝑛) − 𝑅0, 𝑛 ∈ [1, 𝑁 ] (9)

where 𝑓𝑐𝑙 is the starting frequency of 𝑙-th chirp. By aggregating
all the observations from the chirp group, we can obtain the final
measurement. We utilize the inter-quartile mean (IQM) algorithm
[34] for the signal aggregation, which calculates the truncated mean
of the data within its inter-quartile range: 𝑋𝑛 = IQM({𝑋𝑙,𝑛}), 𝑛 ∈
[1, 𝑁 ].

4.3 Vibration Refinement
In this module, we estimate the AoA of each Rx antenna and refine
the vibration measurement, so as to obtain the correct measurement
along its actual vibrating direction.

4.3.1 AoA Estimation. The conventional AoA estimation method,
which exploits the phase differences among Rxs, might not work
here due to the unawareness of background reflections. Our idea
is to directly estimate the AoAs of vibration reflections with their
rotation angles in the IQ domain. Note that the rotation angles of IQ
samples from different Rx antennas reveal their phase differences,
which are induced by their different propagation distances. Suppose
we derive the difference between the propagation distance of the𝑚-
th antenna compared to that of the first Rx antenna as 𝛥𝑅𝑚 = 𝑅𝑚 −
𝑅1,𝑚 ∈ [2, 𝑀], the basic model for AoA estimation is illustrated in
Fig. 11: (i) we assume the non-parallelism of the arriving waves that
describe different AoAs at different Rx antennas; (ii) suppose 𝒑𝑚 =(
−𝜆
2 (𝑚 − 1), 0

)⊤
is the location of𝑚-th Rx and 𝒐 = (𝑜1, 𝑜2)⊤ is the

location of the vibrating object, we can compute 𝑅𝑚 as ∥𝒐 − 𝒑𝑚 ∥.
With 𝛥𝑅𝑚 = 𝑅𝑚 − 𝑅1 and 𝑅1 = ∥𝒐∥, we formalize the following
optimization problem to solve 𝒐∗:

𝒐∗ = argmin
𝒐

𝑀∑
𝑚=2

(
∥𝒐 − 𝒑𝑚 ∥ − ∥𝒐∥ − 𝛥𝑅𝑚

)2 (10)

Then, the AoAs of 𝑀 Rx antennas {𝛽𝑚}𝑀𝑚=1 can be calculated ac-
cording to their geometric relationship with 𝒐∗.

4.3.2 Direction-aware Vibration Refinement. Since mmWave radar
can only sense the displacement along the LOS direction towards
the vibrating objects, the measurement from the RVE module is
just a projection of the vibration signal to this direction. mmVib
exploits the multi-antenna property to recover the vibration signal
along its real vibrating direction.

Suppose the angle between the real vibrating direction and the
norm direction of the antenna array is 𝛽 and the AoA of𝑚-th an-
tenna is 𝛽𝑚 , the measurement from𝑚-th antenna is a projection
of the vibration signal with an angle 𝛽 − 𝛽𝑚 . Denote the measured
vibration amplitudes by {X𝑚}𝑀

𝑚=1 and the correct vibration ampli-
tude by X. We can estimate 𝛽 and X together with the following
optimization problem:

X∗, 𝛽∗ = argmin
X,𝛽

𝑀∑
𝑚=1

∥X cos (𝛽 − 𝛽𝑚) − X𝑚 ∥2 (11)

A larger antenna array with more antennas can lead to a better
estimation of the final vibration. It is also feasible to obtain more
vibration measurements from different AoAs by combining the
results of multiple synchronized radars.

5 DISCUSSION
5.1 Multi-object Measurement
It’s easy for mmVib to handle the multi-object measurement if
these vibrating objects fall into different range bins: their reflection
signals can be separated through the Range-FFT. In §6.5, our case
study shows that we can configure the deployment position of
the radar so that multiple vibrating objects are located in different
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Figure 12: Experiment setup of mmVib

range bins. However, it is possible that we can’t achieve this ideal
deployment condition and several vibrating objects might fall into
the same range bin. In such cases, spatial spectrum analyses, e.g.
receiver beamforming technologies [28] or blind signal separation
algorithms [2] can be adopted to separate these reflections.

5.2 NLOS Measurement
mmWave signals have limited penetration capability. The evalua-
tion in §6.3.3 shows that the performance of mmVib doesn’t degrade
under thin and non-metallic blockages since mmWave signal can
penetrate them. Therefore, we may enclose the mmWave board and
its on-board antenna to improve the devices’ durability. However,
in the practical deployment of mmVib, we should avoid thick or
metal blockages, e.g. walls and pillars.

5.3 Phase Noise
The phase noise in the vibration signal actually has two sources:
multiplicative noise and additive noise [26]. The multiplicative
noise is induced by the device circuits such as the oscillator and
the mixer. The additive noise is introduced by the wireless channel,
which is typically treated as the Additive White Gaussian Noise
(AWGN) [30]. The consolidated observations provided by the chirp
group in mmVib cope with the additive noise, which is particularly
effective in the scenarios where the SNR is low. However, the mul-
tiple observations can’t eliminate the inherent multiplicative noise.
For even higher accuracy of vibration measurement, one may resort
to device calibration prior to deployment.

6 EVALUATION
In this section, we implement mmVib and evaluate it in both the
lab environment and a real steel plant.

6.1 Implementation and Methodology
Implementation:We implementmmVib on a commercial mmWave
radar board, Texas Instruments (TI) IWR1642 BoosterPack [14].
IWR1642 chip works on the 77𝐺𝐻𝑧 millimeter-wave frequency
band (77 ∼ 81𝐺𝐻𝑧). It integrates 6 on-board antennas (2 Tx anten-
nas and 4 Rx antennas). We let Tx1 send the FMCW signal with
2.5𝐺𝐻𝑧 bandwidth, and Rx1∼Rx4 receive the reflected signal. The
raw sampling rate (fast-time samples) is around 6𝑀𝐻𝑧 and the
chirp sampling rate (slow-time samples) is 10𝑘𝐻𝑧. The raw fast-
time samples are captured through a TI DCA1000EVM [15] data
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Figure 13: Overall Performance

acquisition board in the high-speed and real-time manner. The data
processing coded in Python runs on a computer with an Intel i7-
8550U processor and 16𝐺𝐵 memory. The mmWave board costs $299
while its core chip only costs $40.

Ground Truth: The experiments are conducted in both our lab
and a steel plant. In the lab, we use a vibration calibrator to generate
tunable vibrations with 20𝐻𝑧 to 500𝐻𝑧 (±1%) frequency and 5𝑢𝑚
to 500𝑢𝑚 (±1%) amplitude. These parameters describe typical vibra-
tions of industrial objects. The ground truth of those measurements
in the steel plant is provided by a piezoelectric vibration sensor.

Experiment setting: Fig. 12 shows the experiment setup in a
hallway of 2.4𝑚 × 10𝑚. The vibration calibrator is placed on a table
while the mmWave radar is placed on a tripod. We evaluate mmVib
in terms of vibration amplitude and frequency, measurement dis-
tance and angle, etc. For each setting, we collect at least 40 traces
of raw mmWave data1.

Comparisons:We compare mmVib with two mmWave-based
vibration measurement approaches introduced before: the theoreti-
cal phase-based method proposed in [7] (denoted by Radar) and the
basic fitting-based method proposed in [23] (denoted by CircFit).
To ensure fairness, the three approaches use the same data and
pre-processing methods.

Metrics: In the experiments, we evaluate the performance in
terms of the errors in amplitude and frequency estimation: the latter
one indicates the correctness of the measured vibration signals
while the former one stands for the accuracy.

1The dataset is available at http://tns.thss.tsinghua.edu.cn/sun/

http://tns.thss.tsinghua.edu.cn/sun/
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Figure 14: Accuracy of amplitude and frequency estimation in the lab environment

6.2 Evaluation on Vibration Measurement
In this experiment, we evaluate the performance by changing the
amplitude (from 10𝑢𝑚 to 200𝑢𝑚), frequency (from 20𝐻𝑧 to 500𝐻𝑧)
and distance (from 50𝑐𝑚 to 700𝑐𝑚). The calibrator is placed directly
in front of the radar with a vibrating direction along the radar’s
norm direction. In these cases, smaller amplitude and farther dis-
tance mean lower SNR.

6.2.1 Overall performance: Fig. 13 shows the overall performance
of all the settings: mmVib achieves 8.2% relative amplitude error and
0.5% relative frequency error in median. Typically, mmVib achieves
a median amplitude error of 3.4𝑢𝑚 for the 100𝑢𝑚-amplitude vibra-
tion. The comparisons indicate that mmVib outperforms state-of-
the-art approaches by (i) significantly reducing the error of ampli-
tude estimation; (ii) improving the stability of frequency estimation.
For all settings, mmVib reduces the 80𝑡ℎ-percentile amplitude error
by 62.9% and 68.9%, compared to CircFit and Radar respectively.

Next, we examine the impact of different factors on the estima-
tion accuracy and stability: in Fig. 14, the first row presents the
lower-SNR cases while the second row presents the higher-SNR
cases. Note that the Y-axis uses the logarithmic scale.

6.2.2 Amplitude accuracy under different amplitudes. In this exper-
iment, we keep the frequency to 50𝐻𝑧 and change the amplitudes
from 10𝑢𝑚 to 200𝑢𝑚 at two distances 300𝑐𝑚 and 600𝑐𝑚 respec-
tively. From the results in Fig. 14(a), we can see that: (i) mmVib can
accurately measure the tiny vibrations at a relative far distance: for
a typical 300𝑐𝑚-30𝑢𝑚 case, it achieves an average amplitude error
of 2.7𝑢𝑚. (ii) For two fitting-based approaches, their performances
are basically in proportional to the SNR. (iii) Since CircFit can be
easily affected by noises, the improvement of mmVib is more signif-
icant when the SNR is lower, i.e. the lower amplitude or the farther
distance. (iv) For extremely low-SNR cases, e.g. the 600𝑐𝑚-10𝑢𝑚
case, mmVib seems to have great improvement in the amplitude
estimation. In fact, in these cases mmVib actually doesn’t extract
the correct vibration signals, which will be explained in §6.2.5.

6.2.3 Amplitude accuracy under different frequencies. In this exper-
iment, we keep the distance to 100𝑐𝑚 and change the frequencies
from 20𝐻𝑧 to 500𝐻𝑧 at two amplitudes 10𝑢𝑚 and 100𝑢𝑚 respec-
tively. Due to power limitations, our calibrator cannot generate
vibration signals of a large amplitude at a high frequency or a small
amplitude at a low frequency. We can see from Fig. 14(b) that: (i)
For 10𝑢𝑚 cases, mmVib achieves a low amplitude error at a large
frequency range, i.e. 2.1um in average, which significantly outper-
forms other approaches. (ii) For higher-SNR cases in lower Fig.
14(b), mmVib also outperforms the other two approaches, but the
performance gap is relatively small.

6.2.4 Amplitude accuracy under different distances. In this exper-
iment, we keep the frequency to 50𝐻𝑧 and respectively measure
30𝑢𝑚 and 100𝑢𝑚 vibrations at a distance from 50𝑐𝑚 to 700𝑐𝑚.
We can see from Fig. 14(c) that: (i) mmVib can work with a rel-
atively long measurement distance: the average error is 4.7𝑢𝑚 for
the 500𝑐𝑚-30𝑢𝑚 case while 6.9𝑢𝑚 for the 700𝑐𝑚-100𝑢𝑚 case. (ii)
mmVib outperforms the other two approaches at all the distances.

6.2.5 Frequency accuracy under different conditions. We evaluate
the performance of frequency estimation under different vibration
amplitudes and measurement distances with the same data in §6.2.2
and §6.2.4. The results in 14(d) show that mmVib achieves the
absolute frequency error less than 0.3𝐻𝑧. It is also worth noticing
that when the distance is 600𝑐𝑚 and the amplitudes is not larger
than 20𝑢𝑚, mmVib has a relatively large frequency estimation error,
which means mmVib doesn’t extract the correct vibration signals
in those cases. That implies the limitation of mmVib in handling
vibration signals with extremely low SNR.

6.3 Impact of practical factors
We evaluate the impact of several practical factors that are related
to the applicability of mmVib in practice.

6.3.1 Multipath conditions. The multipath condition can signif-
icantly affect the mmWave signal. The experiment is conducted
in our office where tables, chairs and computers act as multipath
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Figure 15: Impact of practical factors

reflectors. Besides, we place extra metal plates at different locations
to make the multipath signals fall into the same bin of vibration
reflections or the other bins. Denote the cases with 0, 2 or 6 metal
plates by clean, light and heavy. The amplitude, frequency and
distance are fixed to 100𝑢𝑚, 50𝐻𝑧 and 100𝑐𝑚. The results in Fig.
15(a-b) show that (i) mmVib outperforms other approaches for all
the cases; (ii) in the case that strong multipath signal interferes
with the vibration reflection, mmVib’s performance degrades. In
practice, we can improve the spatial resolution by reducing the
frequency shift in the chirp group.

6.3.2 Measurement angles. We evaluate the impact of measure-
ment angles. The measurement angle is defined as the AoA of the
first RX antenna. In this experiment, we keep the vibrating direc-
tion along the norm direction of the antenna array, and translate
the calibrator to control the measurement angles from 0◦ to 40◦,
as shown in Fig. 12(a). The amplitude and frequency are set to
100𝑢𝑚 and 50𝐻𝑧. Fig. 15(c) shows the amplitude errors of mmVib
with and without the VR module under different angles. We can
see that: (i) The amplitude error increases with the angle, since
the measurement distance increases and leads to lower SNR. (ii)
For different angles, mmVib achieves the average amplitude error
less than 13.7𝑢𝑚. (iii) Our VR module brings performance gain,
especially when the angle is relatively large.

6.3.3 LOS-path blockages. We evaluate the ability ofmmVib to deal
with LOS-path blockages. We place various objects with different
materials but similar thickness (∼ 1.5𝑐𝑚) in front of the mmWave
radar (∼ 20𝑐𝑚), and evaluate the amplitude errors. Fig. 15(d) shows
the results that (i) the metal materials, e.g. laptops and phones,
will block the mmWave signal and make the measurement results
inapplicable; (ii) the radiation-absorbent material, e.g. the foam,
will distort the mmWave signal and greatly degrade the system
performance; (iii) due to the penetration property of mmWave,
other materials won’t obviously degrade the system performance
and only introduce 10𝑢𝑚 ∼ 20𝑢𝑚 errors in most cases. Based on
this result, we may enclose the mmWave board and its on-board
antenna to improve the devices’ durability.

6.4 System Micro-benchmarks
6.4.1 Vibration detection. This experiment is conducted to illus-
trate how to select the parameter E in the VD module. We place
4 speakers as vibrating objects in 4 adjacent range bins with the
measurement distances of 89𝑐𝑚, 95𝑐𝑚, 101𝑐𝑚 and 108𝑐𝑚 respec-
tively. We randomly select different numbers of speakers to play
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Figure 16: System micro-benchmarks

the same single-tone sound and evaluate how many range bins we
should inspect, i.e E, to correctly find N vibration bins. From Fig.
16(a), we observe that the VD module can efficiently and accurately
localize the vibration bins by setting E to N + 1.

6.4.2 AoA Estimation. We evaluate the AoA estimation with the
same setup and data in §6.3.2. Fig. 16(b) plots the CDFs of AoA
estimation errors of Rx1 corresponding to different deployment
angles. We observe that: (i) mmVib achieves a relatively low 80𝑡ℎ-
percentile AoA estimation error of about 1.4◦. Since the size of the
metal vibrator is relatively small, the results prove that our AoA
estimation algorithm is effective by only considering the vibration
reflections. (ii) Because the radar’s field of view (FoV) is about ±40◦,
the SNR degrades significantly in the 40◦ cases.

6.4.3 Processing Efficiency. We evaluate the processing efficiency
of mmVib. We mainly consider 3 major components of mmVib:
pre-processing (chirp group generation and Range-FFT), vibration
signal extraction, and post-processing (refinement and aggrega-
tion). The median processing time of these components is 103.4𝑚𝑠 ,
428.1𝑚𝑠 and 2.5𝑚𝑠 for each mmWave data frame. This is an ac-
ceptable time cost and we believe it can be further improved by
processing all the chirps in parallel.

6.5 Field Study
We conduct a field study to deploy and evaluate mmVib in a steel
plant, the real-world industrial environment. Fig. 17 shows the
deployment, where the vibrating objects are the bearings of a trans-
mission system containing the descaling pump, speed reducer and
main motor. The system works in two modes: low-speed operation
and high-speed operation, with different rotating frequencies. The
amplitudes of the vibrations are 𝜇𝑚-level. The plant installs the
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Figure 17: Field study of mmVib

piezoelectric vibration sensors on different parts of the target de-
vices and the sensor readings are sent back to the console of the
monitoring room via wires. We use those readings as the ground
truth.

Non-contactmeasurement:mmVib outperforms conventional
approaches due to its non-contact measurement mechanism with-
out any disturbance on the running machines or extra deployment
overhead. Thus, what we are most curious about is whether it works
in practice and how far the measurement distance can be. Fig. 18
shows the estimation stability (median and quartiles) and accuracy
of the vibration amplitude and frequency of a descaling pump in
two operation modes. Taking the high-speed mode for example,
when the distance varies from 100𝑐𝑚 to 500𝑐𝑚, the average ampli-
tude errors are 3.6𝑢𝑚, 6.7𝑢𝑚, 5.3𝑢𝑚, 17.4𝑢𝑚 respectively while the
average frequency errors are less than 0.4𝐻𝑧. This indicates that
mmVib is able to sense the 𝜇𝑚-level vibration in practice and its
measurement is accurate and consistent when the distance ≤ 3𝑚.

Multi-object measurement: The second appealing character-
istic of mmVib is its capability of measuring multiple vibrating
objects simultaneously. In this experiment, we place the radar in
front of the speed reducer and main motor, and ensure that the
bearings of these two machines fall into different range bins. Fig.
19 shows that: (i) mmVib captures the fact that, although the ampli-
tudes of the speed reducer and main motor differ from each other,
their frequencies are nearly identical due to their direct connection
(ii) The relatively small inter-quartile ranges and acceptable esti-
mation errors demonstrate the stability and accuracy of mmVib for
multi-object measurement.
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Figure 18: Non-contact measurement results
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Figure 19: Multi-object measurement results

7 RELATEDWORKS
In this section, we review the related literature of mmVib.

Vibrationmeasurement approaches.Conventional approaches
for vibration measurement are based on specialized sensors or opti-
cal devices. Piezoelectric accelerometer is designed for vibration
measurement based on the piezoelectric effect [5, 9, 20]. It requires
to be installed on the surface of the vibration source, which could
introduce non-trivial deployment and maintenance cost. Laser vi-
brometer is also a promising solution for high-accuracy vibration
measurement [3, 6, 27]. However, its has the high device cost and
strict requirement for the LOS path. A recent work Vibrosight pro-
poses to employ a low-cost laser sensor as a long-range vibrometer
[38]. It mainly focuses on leveraging vibration spectrums for object
recognition rather than restoring vibration signals.

RF-based vibration measurement. RF-based approaches are
promising in measuring a target’s displacement by measuring the
change of the RF signals in a non-intrusive manner [4, 18, 32, 36, 39].
ART exploits the 2.4𝐺𝐻𝑧 signals and models the relationship be-
tween signal features and vibration parameters [32]. However, the
mm-level accuracy can’t satisfy the micrometer-level requirement
in industry. Tagbeat and TagSound exploit the 915𝑀𝐻𝑧 UHF RFID
for vibration measurement [18, 36]. Similarly, they face the same
limitation on the vibration amplitude. It is still impossible to esti-
mate micrometer-level vibrations.

mmWave-based sensing. Compared with common wireless
signals such as RFID, WiFi and acoustic signals, mmWave is highly
sensitive to tiny displacements due to the mm-level wavelength.
Lots of works exploit mmWave for high-precision tracking [33],
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hand gesture and human activity recognition [16, 19], object imag-
ing and recognition [25, 41, 42], localization and map construction
[11, 22, 24, 40], vital signal monitoring [7, 23, 37], noise-resistant
speech sensing [35] and water-to-air wireless communication [29].

mmWave-based vibration measurement. mmWave is there-
fore a promising solution for micrometer-level vibration measure-
ment [7, 23, 29, 37]. Ding et al. have proposed a theoretical signal
model which translates the signal characteristics of FMCW to the
vibration parameters [7]. However, without considering the mul-
tipath effect, the model fails to extract the correct tiny vibration
amplitude. Mikhelson et al. overcome the above problem by analyz-
ing the mmWave signal in IQ domain and introduce circle fitting
method [23]. However, this work can’t deal with the tiny vibration
because of the ambiguity in the small arc fitting.

Compared with the existing mmWave-based approaches, mmVib
particularly addresses the challenges in multipath-rich and noisy
environment for highly accurate vibrationmeasurement. Built upon
the COTS mmWave radar, mmVib exploits the multi-frequency and
multi-antenna properties of the reflected signals and shows superior
performance, especially in low-SNR environments.

8 CONCLUSION AND FUTUREWORK
In this paper, we present mmVib for micrometer-level vibration
measurement. A multi-signal consolidation model is propose to
guide the robust and accurate extraction of tiny vibrations under
low SNR conditions. We evaluate mmVib in the laboratory as well
as field environment. mmVib achieves 8.2% relative amplitude error
and 0.5% relative frequency error in median. Typically, the median
amplitude error is 3.4𝑢𝑚 for the 100𝑢𝑚-amplitude vibration.

As of the time of publication of this paper, the real-world de-
ployment and application of mmVib are on the way. The feature of
non-invasive measurement and the consistently high measurement
accuracy of mmVib have attracted the attention from industry. In
the future, we will collaborate with industrial partners to deploy
tens of measurement devices in the plants and further extend the
research on mmVib in the following aspects:

Solving the practical issues: We plan to make mmVib a more
practical solution to support the continuous and multi-object vi-
bration measurement. How to deal with the dynamic interference
from surrounding objects and walking people is also an important
issue to study.

Extending the sensing capabilities: Through the discussion
with industrial partners, we find that some machines have more
complex vibration characteristics. For instances, different parts of
a machine may vibrate differently. The vibration of a machine may
form a 2D trajectory rather than 1D movement. We will address
these problems in the future.
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